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Issue: Existing text-to-motion methods suffer from semantic misalignment and fail to rectify
the denoising process.
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Ik v ‘ (a) A person takes several steps in  (b) Person moves their body and (c) A person sits cross legged then
A person walks to a somewhat random pattern while kicks with left foot forward stands up.
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appearing to sweep the floor.

g Text description

(d) A person walks forward slowly making large strides, Sampled motion Xx;

with both arms outstretched to their sides for balance.
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(c) A person sits cross legged

(a) A person walks forward, turns (b) A Person tripped over his foot.
then stands up.

and then sits on a chair.

. ) B = “i )
T w/0 ReAlign w/ ReAlign
|
|
I

(f) A person squats down

w/ ReAlign
(e) A person stretches their arms
outwards.
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(d) A person turns around sadly to

wipe away their tears.
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(h) A person appears to be running in straight line
then jumps over something and continues running.

(g) A person standing up leans forward,

X
then lowers their head and arms. \ »

(f) Both hands holding his right leg.

(e) A person jumps to the right. ‘A person walks to

the right front.”
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Key Observation: We observe that diffusion-based text to motion generation accumulates
text-motion misalignment during denoising.
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(g) A person walks towards the left front.

w/o ReAlign w/ ReAlign
(h) A person boastfully meanders across a room in

a confident manner.
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Question: Can we improve text—motion alignment and realism at inference
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