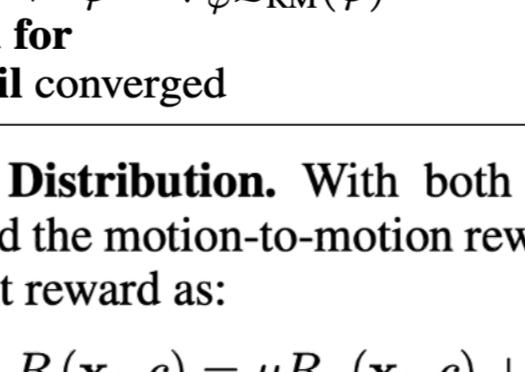
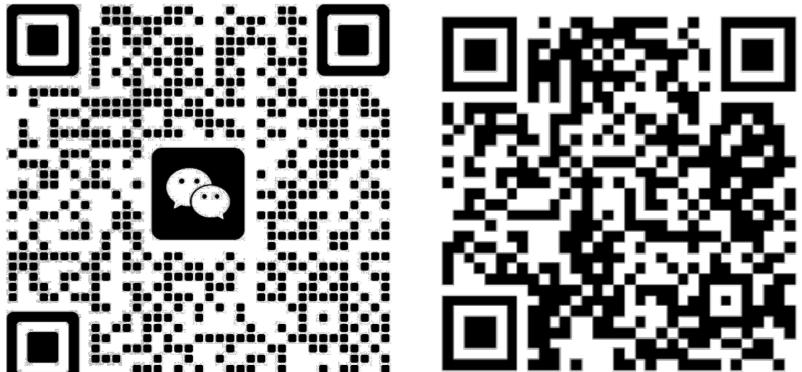


Introduction

Issue: Existing text-to-motion methods suffer from semantic misalignment and fail to rectify the denoising process.

Key Observation: We observe that diffusion-based text to motion generation accumulates text-motion misalignment during denoising.

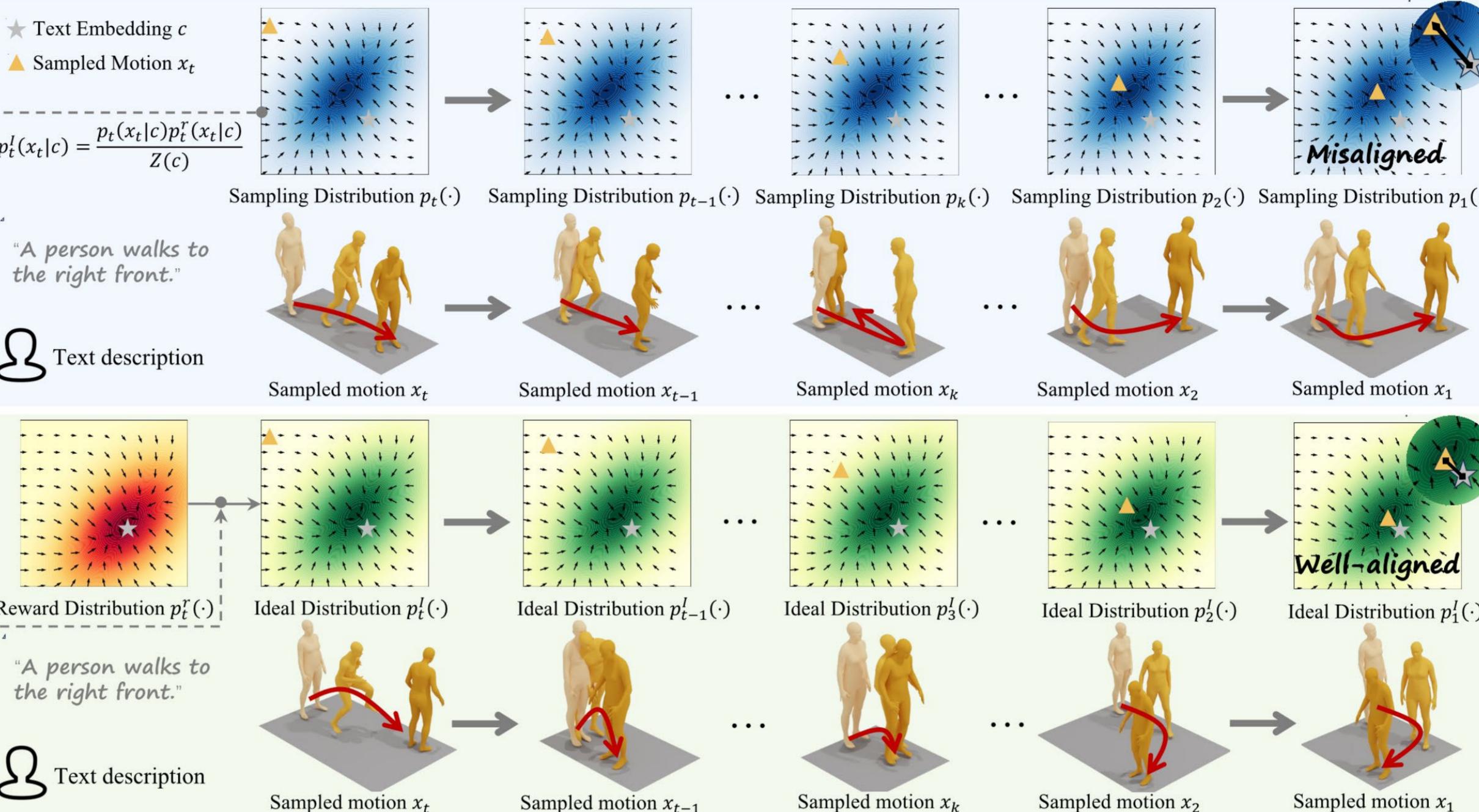
Question: Can we improve text-motion alignment and realism at inference time?

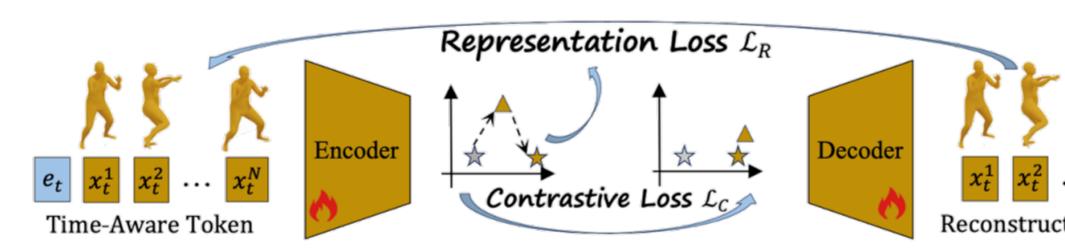


Contributions: We propose ReAlign, a plug and play reward guided sampling method with a step aware reward model to improve text motion alignment and motion realism during denoising without fine tuning the diffusion model.

Motivation: Diffusion based text to motion models can generate realistic motions but often drift from the text because sampling favors high probability regions and image trained text encoders do not capture motion dynamics. Since paired motion text data is limited, we guide the sampling process with a reward distribution learned from available pairs to improve alignment without fine tuning the diffusion model.

Contact

Email: wjweng@seu.edu.cn


txf0620@gmail.com


WeChat: wengwanjiang

txf_06_20

Toy Example

Reward-Guided Sampling

Algorithm 1: Training Step-Aware Reward Model

Input: Step-aware reward model R_φ , training set \mathcal{D}_{tr} , timestep T range $[t_{min}, t_{max}]$, probability parameter ω , noise scheduler α .

Output: Step-aware reward model R_φ .

```

1:  $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 
2:  $\mathbf{x}^c = \arg \max_{\mathbf{x} \in \mathcal{D}_{tr}} R_\varphi(\mathbf{x}, c)$ 
3: for  $t = T, \dots, 1$  do
4:   use  $\mathbf{x}^c$  to obtain reward score
5:    $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$  if  $t > 1$  else  $\epsilon = \mathbf{0}$ 
6:    $R(\mathbf{x}_t, c) \leftarrow \mu R_\varphi(\mathbf{x}_t, c) + \eta R_m(\mathbf{x}_t, c)$   $\triangleright$  Compute Reward  $R(\mathbf{x}_t, c)$ 
7:    $\mathbf{x}_{t-1} \leftarrow \frac{1}{\sqrt{\alpha_t}} (\bar{\mathbf{x}}_{t-1} + \sqrt{\beta_t} \epsilon) + \nabla R(\mathbf{x}_t, c)$ .  $\triangleright$  Denoise guided by reward model
8: end for
9: return  $\mathbf{x}_0$ 
10: end for
11: until converged

```

Algorithm 2: Reward-Guided Denoising Process

Input: Diffusion model ϵ_θ , reward model R , training set \mathcal{D}_{tr} , condition c , timestep T .

Output: Generated motion \mathbf{x}_0 .

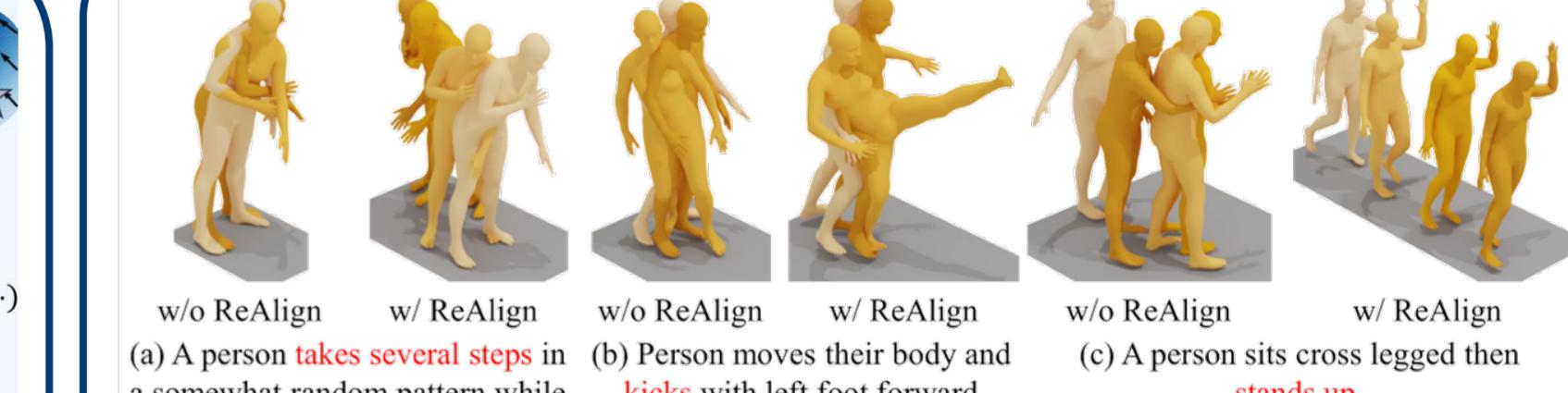
```

1:  $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 
2: for  $(\mathbf{x}, c)$  in  $\mathcal{D}_{tr}$  do
3:    $t \leftarrow 0$   $\triangleright$  Initialize t
4:   if  $\text{Uniform}(0,1) > \omega$  then
5:      $t \leftarrow \text{Uniform}(t_{min}, t_{max})$   $\triangleright$  Add noise to motion
6:   end if
7:    $\mathbf{x}_t \sim \mathcal{N}(\sqrt{\alpha_t} \mathbf{x}, (1 - \alpha_t) \mathbf{I})$   $\triangleright$  Forward process
8:    $\mathcal{L}_{RM}(\varphi; \mathbf{x}_t, c) \leftarrow \mathcal{L}_C(\varphi; \mathbf{x}_t, c) + \mathcal{L}_R(\varphi; \mathbf{x}_t, c)$   $\triangleright$  Compute loss  $\mathcal{L}_{RM}$ 
9:    $\varphi \leftarrow \varphi - \nabla_\varphi \mathcal{L}_{RM}(\varphi)$   $\triangleright$  Update parameter
10: end for
11: until converged

```

motion-based alignment. This reward formulation defines the reward distribution over noised motion as:

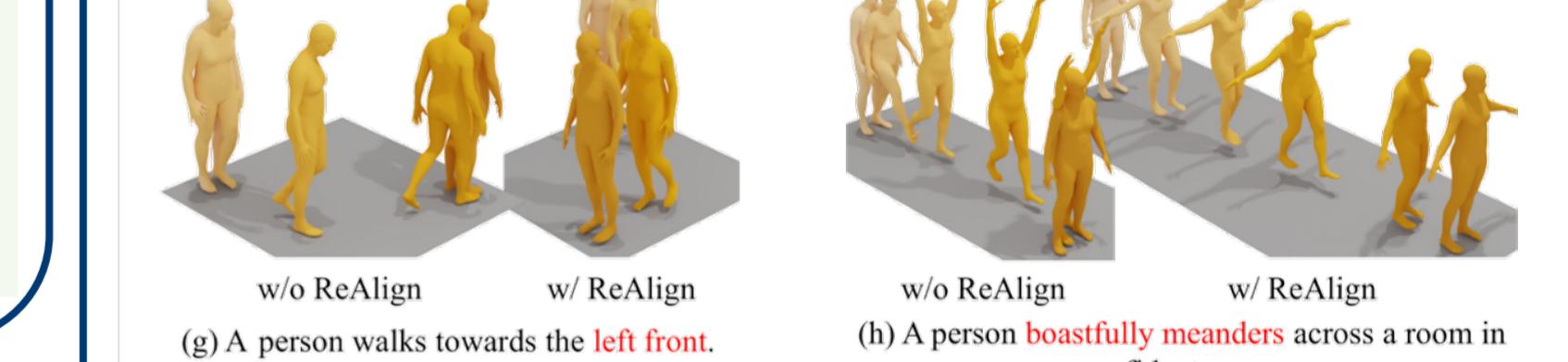
$$p_t^r(\mathbf{x}_t | c) = \exp(R(\mathbf{x}_t, c)) / Z^r(c). \quad (10)$$


Here, $Z^r(c) = \int \exp(R_\varphi(\mathbf{x}, c)) d\mathbf{x}$ is for normalization.

By integrating text-motion and motion-motion alignment, our approach constructs a robust reward signal that captures both semantic consistency and motion coherence. This enables more precise guidance of the diffusion sampling process, ensuring that generated motions are not only probable but also faithful to their textual descriptions.


$$R(\mathbf{x}_t, c) = \mu R_\varphi(\mathbf{x}_t, c) + \eta R_m(\mathbf{x}_t, c), \quad (9)$$

where μ and η control the contributions of text-based and


Experiments

(a) A person takes several steps in a random pattern while appearing to sweep the floor.
(b) Person moves their body and kicks with left foot forward
(c) A person sits cross legged then stands up

(d) A person turns around sadly to wipe away their tears.
(e) A person stretches their arms outwards.
(f) A person squats down
(g) A person walks towards the left front.
(h) A person boastfully meanders across a room in a confident manner.

(i) A person is crawling toward the right front.
(j) A person walks forward with arms fully extended

Method	Top 1	Top 2	Top 3	FID \downarrow	MM Dist \downarrow	Diversity \rightarrow
Real	0.511	0.703	0.797	0.002	2.974	9.503
T2M (2022a)	0.455 \pm 0.002	0.636 \pm 0.003	0.736 \pm 0.002	1.087 \pm 0.002	3.347 \pm 0.008	9.175 \pm 0.002
MDM (2023)	0.455 \pm 0.002	0.645 \pm 0.002	0.749 \pm 0.002	0.489 \pm 0.007	3.330 \pm 0.025	9.920 \pm 0.003
T2M-GPT (2023a)	0.492 \pm 0.003	0.679 \pm 0.002	0.775 \pm 0.002	0.141 \pm 0.005	3.121 \pm 0.009	9.722 \pm 0.002
ReMoDifuse (2023b)	0.510 \pm 0.005	0.698 \pm 0.006	0.795 \pm 0.004	0.103 \pm 0.004	2.974 \pm 0.016	9.930 \pm 0.003
OMG (2024)	0.491 \pm 0.001	0.754 \pm 0.001	0.851 \pm 0.001	0.113 \pm 0.001	3.113 \pm 0.001	9.416 \pm 0.049
MotionLCM (2025)	0.502 \pm 0.003	0.698 \pm 0.002	0.798 \pm 0.002	0.304 \pm 0.012	3.012 \pm 0.007	9.657 \pm 0.085
Mo-Mamba (2025b)	0.502 \pm 0.003	0.693 \pm 0.002	0.792 \pm 0.002	0.281 \pm 0.011	3.069 \pm 0.009	9.871 \pm 0.084
CoMo (2024)	0.502 \pm 0.002	0.692 \pm 0.007	0.790 \pm 0.002	0.267 \pm 0.008	3.023 \pm 0.015	9.936 \pm 0.006
ParCo (2024)	0.515 \pm 0.003	0.706 \pm 0.002	0.801 \pm 0.002	0.109 \pm 0.003	2.927 \pm 0.008	9.576 \pm 0.088
MARDM (2024)	0.500 \pm 0.004	0.695 \pm 0.003	0.795 \pm 0.003	0.114 \pm 0.007	-	-
MG-MotionLLM (2025b)	0.516 \pm 0.002	0.706 \pm 0.002	0.802 \pm 0.003	0.303 \pm 0.010	2.957 \pm 0.009	9.969 \pm 0.073
EnergyMoGen (2025)	0.526 \pm 0.003	0.718 \pm 0.003	0.815 \pm 0.002	0.176 \pm 0.008	2.931 \pm 0.007	9.500 \pm 0.091
MLD (2023b)	0.481 \pm 0.003	0.673 \pm 0.003	0.772 \pm 0.002	0.473 \pm 0.013	3.196 \pm 0.010	9.724 \pm 0.082
w/ ReAlign (Ours)	0.567 \pm 0.002 (+17.9%)	0.759 \pm 0.003 (+12.8%)	0.848 \pm 0.003 (+9.8%)	0.198 \pm 0.005 (+58.8%)	2.704 \pm 0.007 (+15.4%)	9.474 \pm 0.068 (+86.9%)
MLD-+ (2023)	0.548 \pm 0.003	0.738 \pm 0.003	0.829 \pm 0.002	0.073 \pm 0.003	2.816 \pm 0.008	9.658 \pm 0.089
w/ ReAlign (Ours)	0.572 \pm 0.002 (+4.4%)	0.764 \pm 0.002 (+3.5%)	0.852 \pm 0.001 (+2.8%)	0.055 \pm 0.003 (+24.7%)	2.646 \pm 0.008 (+5.8%)	9.476 \pm 0.055 (+83.9%)

Methods	Noise	Text-Motion Retrieval↑				Motion-Text Retrieval↑			
		R@1	R@2	R@3	R@5	R@1	R@2	R@3	R@10
HumanML3D	✗	40.49	53.52	61.14	70.96	84.15</td			